Article 10318

Title of the article



Kaz'min Aleksandr Igorevich, Candidate of engineering sciences, teacher, Military Research and Educational Center of the Air Forces “Air Forces Academy named after professor N. E. Zhukovskiy and Y. A. Gagarin” (54A Starykh Bolshevikov street, Voronezh, Russia), E-mail:
Fedyunin Pavel Aleksandrovich, Doctor of engineering sciences, professor, head of sub-department, Military Research and Educational Center of the Air Forces “Air Forces Academy named after professor N. E. Zhukovskiy and Y. A. Gagarin” (54A Starykh Bolshevikov street, Voronezh, Russia), E-mail: 

Index UDK

537.86; 621.317.335.31 




Background. Wide distribution of multilayer dielectric structures in modern science and technology makes it necessary to accurately and reliably monitor their electrophysical and geometric parameters. The testing in this case, as a rule, should be non-destructive with one-sided access during measurements. One of the ways to solve this problem is to use the microwave methods of testing. The basis of any radio wave method of testing is an electrodynamic model of the interaction of the electromagnetic field with the material under study. The choice and justification of the electrodynamic model has a significant impact on the accuracy and reliability of the measurements. The purpose of the work is development of an electrodynamic model of multifrequency radio wave testing of the parameters of multilayer dielectric materials with an arbitrary number of layers on the basis of the interaction of surface electromagnetic waves with the object of testing
Materials and methods. The study are based on the application of the theory of macroscopic electrodynamics, the propagation of electromagnetic waves in inhomogeneous media, the methods of electrodynamic machine modeling, the theory of antennas and measurements.
Results. The electrodynamic model is developed based on the dispersion equations that allow to bind the relative dielectric permittivity and thickness of dielectric material with the field attenuation coefficient of surface electromagnetic wave. The conducted verification of the reliability and accuracy of the electrodynamic model showed a good agreement between the theoretical dependences of the field attenuation coefficient of surface electromagnetic wave on the electrophysical and geometric parameters of the multilayer coating and dependencies obtained during electrodynamic modeling in the CST Studio suit modeling system.
Conclusions. The proposed model can serve as a basis for the development of multifrequency radio wave methods of testing the electrophysical and geometric parameters of multilayer dielectric materials. 

Key words

multilayer dielectric material, electrodynamic model, electrophysical parameters, multifrequency radio wave testing, surface electromagnetic wave, dispersion equation 

 Download PDF

1. Fedyunin P. A., Kaz'min A. I. Sposoby radiovolnovogo kontrolya parametrov zashchitnykh pokrytiy aviatsionnoy tekhniki [Methods of radio wave monitoring of protective coating parameters of aviation equipment]. Moscow: Fizmatlit, 2013, 190 p.
2. Nerazrushayushchiy kontrol' i diagnostika: spravochnik [Nondestructive testing and diagnostics: handbook]. Ed. by V. V. Klyuev. Moscow: Mashinostroenie, 1995, 408 p.
3. Fedyunin P. A., Fesenko A. I., Kaz'min A. I. Radiotekhnika [Radio engineering]. 2009, no. 2, pp. 30–39.
4. Borul'ko V. F., Drobakhin O. O., Slavin I. V. Mnogochastotnye SVCh nerazrushayushchie metody izmereniya parametrov sloistykh dielektrikov [Multifrequency microwave non-destructive methods for measuring the parameters of layered dielectrics]. Dnepropetrovsk: Izd-vo DGU, 1982, 120 p.
5. Fel'd Ya. N., Benenson L. S. Antenno-fidernye ustroystva [Antenna-feeder devices. Part 2]. Moscow: VVIA im. prof. N. E. Zhukovskogo, 1959, part 2, 551 p.
6. Balanis C. A. Advanced engineering electromagnetic. USA: John Wiley & Sons, 1989, 1002 p.
7. Encyclopedia of RF and microwave engineering. Ed. by Kai Chang. USA: John Wiley & Sons, 2005, 5949 p.
8. Patrovsky A., Ke Wu Universal Journal of Electrical and Electronic Engineering. 2013, no. 1 (3).


Дата создания: 19.04.2019 14:06
Дата обновления: 22.04.2019 08:31